Gut-brain signalling/Bibliography
- Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
Review Articles
- Magni P. et al. (2009) Feeding behavior in mammals including humans. Ann.N.Y.Acad.Sci. 1163:221-232. PMID 19456343
Bloom S. R. and Wren A. M. (2007) Gut hormomes and Appetite Control. Gastroenterology 132:2116-2130 (Many peptides are synthesized and released grom the gastrointestinal tract..they also physiologically influence eating behaviour...Ghrelin...peptide YY, pancreatic polypeptide, glucagon-like peptide 1, oxyntomodulin and cholecstokinin..)
Cowley M. A., Enriori P. J., Jobst E. E. (2004) The elctrophysiology of feeding circuits. Trends in Endocrinology and Metabolism 15,10:488-497 (The brain receives various sgnals that carry information about nutritional and metabolic status including neuropeptide PYY-3-36, ghrelin, cholecystokinin, leptin, glucose and insulin)
Schwartz M.W. et al. (2000) Central nervous system control of food intake. Nature 404:661-671. (New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time.)
Näslund E. and Hellström P. M. (2007) Appetite signalling: From gut peptides and enteric nerves to brain. Physiology and behaviour 92:256-262. (The signaling systems underlying eating behavior control are complex. The current review focuses on gastrointestinal (GI) signaling systems as physiological key functions for metabolic control. Many of the peptides that are involved in the regulation of food intake in the brain are also found in the enteric nervous system and enteroendocrine cells of the mucosa of the GI tract.)
Banks. W. A. (2008) The blood-brain barrier: Connecting the gut and the brain. Regulatory peptides 149:11-14. (The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI)tract through several mechanisms.First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated by the ability of insulin to alter the BBB transport of amino acids and drugs, represents a second mechanism. A third mechanism is the ability of GI hormones to affect the secretion by the BBB of substances that themselves affect feeding and appetite, such as nitric oxide and cytokines. By these and other mechanisms, the BBB regulates communications between the CNS and GI tract)
Primary Research Papers
- Dockray GJ. (2008) The versatility of the vagus. Physiology & Behaviour 97:531-536 (Afferent neurons of the vagus nerve provide an important pathway for gut signals that act by triggering ascending pathways from the brain stem to hypothalamus...satiety hormone cholecystokinin (CCK) not only stimulates the discharge of these neurons but also controls their expression of both G-protein coupled receptors and peptide neurotransmitters known to influence food intake)
Tsurugizawa T. et al. (2009) Mechanisms of neural response to gastrointestinal nutritive stimuli: The gut-brain axis. Gasroenterology 137:262-273 (The gut-brain axis, which transmits nutrient information from the gastrointestinal tract to the brain, is important for the detection of dietary nutrients.)