Covariance

From Citizendium
Revision as of 17:58, 24 January 2010 by imported>Peter Schmitt (remove a comment)
Jump to navigation Jump to search
This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article has an approved citable version (see its Citable Version subpage). While we have done conscientious work, we cannot guarantee that this Main Article, or its citable version, is wholly free of mistakes. By helping to improve this editable Main Article, you will help the process of generating a new, improved citable version.

The covariance — usually denoted as Cov — is a statistical parameter used to compare two real random variables on the same sample space.
It is defined as the expectation (or mean value) of the product of the deviations (from their respective mean values) of the two variables.

The value of the covariance depends on how clearly a linear trend is pronounced.

  • If one variable increases (in the mean) with the other, then the covariance is positive.
  • It is negative if one variable decreases when the other one tends to increase.
  • And it is 0 if the two variables are (stochastically) independent of each other.

To see how distinct the trend is, and for comparisons that are independent of the scale used, the normed version of the covariance — the correlation coefficient — has to be used.

Formal definition

The covariance of two real random variables X and Y

with expectation (mean value)

is defined by

Remark:
If the two random variables are the same then their covariance is equal to the variance of the single variable: Cov(X,X) = Var(X).