User:John R. Brews/Sample
Liénard–Wiechert potentials
Define β as:
and unit vector û as
where R is the vector joining the observation point P to the moving charge q at the time of observation. Then the Liénard–Wiechert potentials consist of a scalar potential Φ and a vector potential A. The scalar potential is:[1]
where the tilde ‘ ~ ’ denotes evaluation at the retarded time ,
c being the speed of light and rO being the location of the particle on its trajectory.
The vector potential is:
Notes
- ↑ Fulvio Melia (2001). “§4.6.1 Point currents and Liénard-Wiechert potentials”, Electrodynamics. University of Chicago Press, pp. 101. ISBN 0226519570.
Feynman Belušević Gould Schwartz Schwartz Oughstun Eichler Müller-Kirsten Panat Palit Camara Smith classical distributed charge Florian Scheck Radiation reaction Fulvio Melia Radiative reaction Fulvio Melia Barut Radiative reaction Distributed charges: history Lorentz-Dirac equation Gould Fourier space description