Fourier series

From Citizendium
Revision as of 10:27, 4 June 2012 by imported>John R. Brews (→‎References: url)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Fourier series, named after Joseph Fourier (1768—1830), of a complex-valued periodic function f of a real variable ξ, of period P:

is equivalent to an infinite series

defined by

In what sense it may be said that this series converges to f(x) is a somewhat delicate question.[1] However, physicists being less delicate than mathematicians in these matters, simply write

and usually do not worry too much about the conditions to be imposed on the arbitrary function f(ξ) of period P in order that this expansion converge to the function.

References

  1. G. H. Hardy, Werner Rogosinski (1999). “Chapter IV: Convergence of Fourier series”, Fourier Series, Reprint of Cambridge University Press 1956 ed. Courier Dover Publications, pp. 37 ff. ISBN 0486406814.