Homeomorphism

From Citizendium
Revision as of 17:18, 12 October 2007 by imported>Hendra I. Nurdin (stub for homeomorphism)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, a homeomorphism is a function that maps one topological space to another with the property that it is bijective and both the function and its inverse are continuous with respect to the associated topologies. A homeomorphism indicates that the two topological spaces are "geometrically" alike, in the sense that points that are "close" in one space are mapped to points which are also "close" in the other, while points that are "distant" are also mapped to points which are also "distant". In diffential geometry, this means that one topological space can be deformed into the other by "bending" and "stretching".

Formal definition

Let and be topological spaces. A function is a homeomorphism (between and if it has the following properties:

  1. f is a bijective function (i.e., it is one-to-one and onto)
  2. f is continuous
  3. The inverse function is a continuous function.

If some homeomorphism exists between two topological spaces and then they are said to be homeomorphic to one another.