Module
Jump to navigation
Jump to search
The category of modules over a fixed commutative ring are the prototypical abelian category; this statement is deeper than it may appear, in fact every small abelian category is equivalent to a full subcategory of some category of modules over a ring. This result is due to Freyd and Mitchell.
Definition
Let be a commutative ring with . An -module consists of
- An abelian group
- an action of on ; i.e., a map , denoted by , such that
The category of -modules
Examples
- The category of -modules is equivalent to the category of abelian groups.