User:Milton Beychok/Sandbox

From Citizendium
< User:Milton Beychok
Revision as of 02:52, 19 June 2008 by imported>Milton Beychok (→‎Flue gas treatment)
Jump to navigation Jump to search

Flue gas is gas that exits to the atmosphere via a flue, which is a pipe, channel or chimney for conveying combustion product gases from a fireplace, oven, furnace, boiler or steam generator.

Flue gases are produced when coal, fuel oil, natural gas, wood or any other fuel is combusted in an industrial furnace or boiler, a steam-generator in a fossil fuel power plant or other large combustion source.

Flue gas composition

Flue gas is usually composed of carbon dioxide (CO2) and water vapor as well as nitrogen and excess oxygen remaining from the intake combustion air. It also contains a small percentage of pollutants such as particulate matter, carbon monoxide, nitrogen oxides and sulfur oxides. Typically, more than two-thirds of the flue gas is nitrogen.

Table 1: Flue gas generated by burning fossil fuels
Combustion data Fuel gas Fuel oil Coal
Fuel properties:      
Gross heating value, MJ/m³ 43.01    
Gross heating value, MJ/kg   43.50 25.92
Molecular mass 18    
Specific gravity   0.9626  
Carbon/hydrogen ratio by weight   8.1  
weight % carbon     61.2
weight % hydrogen     4.3
weight % oxygen     7.4
weight % sulfur     3.9
weight % nitrogen     1.2
weight % ash     12.0
weight % moisture     10.0
Combustion air:      
Excess combustion air, % 12 15 20
Wet combustion flue gas:      
Wet combustion flue gas, m³/GJ of fuel 294.8 303.1 323.1
Molecular mass of wet combustion gas 27.7 29.0 29.5
Dry combustion flue gas:      
Dry combustion flue gas, m³/GJ of fuel 241.6 269.3 293.6
Molecular mass of dry combustion gas 29.9 30.4 30.7
Notes:
(1) Gas amounts (m³) are at 0 °C and 1 atm
(2) Heating value = caloric value
     

Flue gas treatment

At power plants, flue gas is often treated with a series of chemical processes and scrubbers, which remove pollutants. Electrostatic precipitators or fabric filters remove particulate matter and flue gas desulfurization captures the sulfur dioxide produced by burning fossil fuels, particularly coal.

Nitrogen oxides emissions are reduced either by modifications to the combustion process to prevent their formation, or by catalytic reaction with ammonia or urea. In either case, the aim is to produce nitrogen gas, rather than nitrogen oxides.

In the United States, there is also a rapid deployment of technologies to remove mercury from flue gas - typically by adsorption on sorbents or by capture in inert solids as part of the flue gas desulfurization product.

Technologies for the removal and capture of carbon dioxide from flue gases are now under active research and development as a means of reducing the emissions of so-called greenhouse gas.

See also