Limit point

From Citizendium
Revision as of 16:13, 27 December 2008 by imported>Richard Pinch (added subsections on Limit point of sequence, Adherent, ω-Accumulation and Condensation point)
Jump to navigation Jump to search

In topology, a limit point of a subset S of a topological space X is a point x that cannot be separated from S.

Definition

Formally, x is a limit point of S if every neighbourhood of x contains a point of S other than x itself.

Metric space

In a metric space (X,d), a limit point of a set S may be defined as a point x such that for all ε > 0 there exists a point y in S such that

This agrees with the topological definition given above.

Properties

  • A subset S is closed if and only if it contains all its limit points.

Derived set

The derived set of S is the set of all limit points of S. A set is perfect if it is equal to its derived set.

Related concepts

Limit point of a sequence

A limit point of a sequence (an) in a topological space X is a point x such that every neighbourhood U of x contains all points of the sequence beyond some term n(U). A limit point of the sequence (an) need not be a limit point of the set {an}.

Adherent point

A point x is an adherent point of a set S if every neighbourhood of x contains a point of S (not necessarily distinct from x).

ω-Accumulation point

A point x is an ω-accumulation point of a set S if every neighbourhood of x contains infinitely many points of S.

Condensation point

A point x is a condensation point of a set S if every neighbourhood of x contains uncountably many points of S.