Connected space

From Citizendium
Revision as of 15:00, 8 December 2008 by imported>Richard Pinch (New entry, just a stub, with anchors)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In topology, a connected space is a topological space in which there is no (non-trivial) subset which is simultaneously open and closed. Equivalently, the only continuous function from the space to a discrete space is constant. A disconnected space is one which is not connected.

Examples

Connected component

A connected component of a topological space is a maximal connected subset: that is, a subspace C such that C is connected but no superset of C is.

Totally disconnected space

A totally disconnected space is one in which the connected components are all singletons.

Examples

Path-connected space

A path-connected space is one in which for any two points x, y there exists a path from x to y, that is, a continuous function such that p(0)=x and p(1)=y.