Alternant code

From Citizendium
Revision as of 14:15, 29 October 2008 by imported>Richard Pinch (remove WPmarkup; subpages)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In coding theory, alternant codes form a class of parameterised error-correcting codes which generalise the BCH codes.

Definition

An alternant code over GF(q) of length n is defined by a parity check matrix H of alternant form Hi,j = αjiyi, where the αj are distinct elements of the extension GF(qm), the yi are further non-zero parameters again in the extension GF(qm) and the indices range as i from 0 to δ-1, j from 1 to n.

Properties

The parameters of this alternant code are length n, dimension ≥ n-mδ and minimum distance ≥ δ+1. There exist long alternant codes which meet the Gilbert-Varshamov bound.

The class of alternant codes includes

References