Separation axioms

From Citizendium
Revision as of 16:50, 31 October 2008 by imported>Richard Pinch (new entry, just a stub, more to come)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In topology, separation axioms describe classes of topological space according to how well the open sets of the topology distinguish between distinct points


Terminology

A neighbourhood of a point x in a topological space X is a set N such that x is in the interior of N; that is, there is an open set U such that . A neighbourhood of a set A in X is a set N such that A is contained in the interior of N; that is, there is an open set U such that .


Properties

A topological space X is

  • Hausdorff if any two distinct points have disjoint neighbourhoods
  • normal if a closed set A and a point x not in A have disjoint neighbourhoods
  • regular if disjoint closed sets have disjoint neighbourhoods