Chinese remainder theorem
Jump to navigation
Jump to search
The Chinese remainder theorem is a mathematical result about modular arithmetic. It describes the solutions to a system of linear congruences with distinct moduli. As well as being a fundamental tool in number theory, the Chinese remainder theorem forms the theoretical basis of algorithms for storing integers and in cryptography. The Chinese remainder theorem can be generalized to a statement about commutative rings; for more about this, see the "Advanced" subpage.
Theorem statement
The Chinese remainder theorem:
Let be pairwise relatively prime positive integers, and set . Let be integers. The system of congruences
has solutions, and any two solutions differ by a multiple of .