Baer-Specker group

From Citizendium
Revision as of 16:01, 15 July 2024 by Suggestion Bot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, in the field of group theory, the Baer-Specker group, or Specker group is an example of an infinite Abelian group which is a building block in the structure theory of such groups.

Definition

The Baer-Specker group is the group B = ZN of all integer sequences with componentwise addition, that is, the direct product of countably many copies of Z.

Properties

Reinhold Baer proved in 1937 that this group is not free abelian; Specker proved in 1950 that every countable subgroup of B is free abelian.

See also

References

  • Phillip A. Griffith (1970). Infinite Abelian group theory. University of Chicago Press, 1, 111-112. ISBN 0-226-30870-7.