Talk:Measure (mathematics): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Simen Rustad
No edit summary
imported>Aleksander Halicz
(answer)
Line 20: Line 20:


[[User:Simen Rustad|Simen Rustad]] 15:52, 8 February 2007 (CST)
[[User:Simen Rustad|Simen Rustad]] 15:52, 8 February 2007 (CST)
:Thanks for your remakrs. Actually, I'm not so happy with my own formulation at this point, see the history. I think of a specific example of a Vitali set. It is not really constructed, it exists under the axiom of choice. And it can not be measurable since it leads to contradictions like bounds for infinite sums of ''equal'' positive terms (I missed ''equal'' in the text); I'm not sure whether we should go into all the details. The general aim is to give some explicit motivation or explanation before the formal definition using sigma-algebras is introduced (otherwise the article would be pretty technical, wouldn't it). So feel free to rework what you like.  --[[User:Aleksander Halicz|Alex Halicz]] [[User_Talk:Aleksander Halicz|<small><span style="color:#017701">(hello)</span></small>]] 16:08, 8 February 2007 (CST)

Revision as of 17:08, 8 February 2007

It is really enjoyable for a non mathematiciation to see this here, and easy to read too David Tribe 16:27, 25 January 2007 (CST)

remarks

Just a few thoughts to remember (how to reorganize this)

  • separate particular examples from general classes (now Dirac measure is at the same logical level as Borel or Radon measure)
  • sigma-finite and completeness are more or less at the same logical level (classes of measures)
  • counterexamples should be moved to the lead to give some motivation or explication for the need of the sigma-algebras.
  • application - it would be nice to mention that some basic probability theory may be viewed as a direct application of the measure theory (identifying basic correspondence, definition of probability, types of convergence etc)

Aleksander Halicz 03:38, 7 February 2007 (CST)


You write

This does for instance happen in the real line case, where one expects any "natural" measure to be translation invariant. For such a measure there exists a set, which, if measurable, permits a direct proof of self-contradictory consequences, such as finite upper bound for an infinite sum of positive elements.

It might be that I don't follow your presentation, but are you thinking of a specific example. Of itself, such an infinite sum shouldn't pose a problem (i.e. sum of 1/2^n), so I think I'm missing something.

On a related note, I wonder how much we should include in the introductory section before a section of motivation is warranted. Still, I'm not certain if that's the most important thing right now.

Simen Rustad 15:52, 8 February 2007 (CST)

Thanks for your remakrs. Actually, I'm not so happy with my own formulation at this point, see the history. I think of a specific example of a Vitali set. It is not really constructed, it exists under the axiom of choice. And it can not be measurable since it leads to contradictions like bounds for infinite sums of equal positive terms (I missed equal in the text); I'm not sure whether we should go into all the details. The general aim is to give some explicit motivation or explanation before the formal definition using sigma-algebras is introduced (otherwise the article would be pretty technical, wouldn't it). So feel free to rework what you like. --Alex Halicz (hello) 16:08, 8 February 2007 (CST)