Average order of an arithmetic function

From Citizendium
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, in the field of number theory, the average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

Let f be a function on the natural numbers. We say that the average order of f is g if

as x tends to infinity.

It is conventional to assume that the approximating function g is continuous and monotone.

Examples

References