File:Ack4c.jpg: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
m (→‎Latex generator of labels: remove comments from the code)
Line 136: Line 136:
\newcommand \rmi {\mathrm{i}}
\newcommand \rmi {\mathrm{i}}
\begin{document}
\begin{document}
{\begin{picture}(608,1006) %\put(12,0){\ing{penma}}
{\begin{picture}(608,1006)
\put(0,0){\ing{acker2}}
\put(0,0){\ing{acker2}}
\put(281,988){\sx{3.}{$y$}}
\put(281,988){\sx{3.}{$y$}}
Line 155: Line 155:
\put(496,274){\sx{3.}{$2$}}
\put(496,274){\sx{3.}{$2$}}
\put(586,274){\sx{3.}{$x$}}
\put(586,274){\sx{3.}{$x$}}
%
%\put(242,620){\sx{1.8}{\rot{85}$y\!=\!\mathcal{A}(4,x)\!=\! A_2(x\!+\!3)\!-\!3\!=\!\mathrm{tet}_2(x\!+\!3)\!-\!3$\ero}}
\put(248,720){\sx{1.8}{\rot{85}$y\!=\!\mathcal{A}(4,x)\!=\! A_{2,4}(x\!+\!3)\!-\!3$\ero}}
\put(248,720){\sx{1.8}{\rot{85}$y\!=\!\mathcal{A}(4,x)\!=\! A_{2,4}(x\!+\!3)\!-\!3$\ero}}
\put(312,720){\sx{1.8}{\rot{80}$y\!=\!\mathcal{A}(3,x)\!=\! A_{2,3}(x\!+\!3)\!-\!3$\ero}}
\put(312,720){\sx{1.8}{\rot{80}$y\!=\!\mathcal{A}(3,x)\!=\! A_{2,3}(x\!+\!3)\!-\!3$\ero}}
\put(348,712){\sx{1.8}{\rot{63}$y\!=\!\mathcal{A}(2,x)\!=\! A_{2,2}(x\!+\!3)\!-\!3$\ero}}
\put(348,712){\sx{1.8}{\rot{63}$y\!=\!\mathcal{A}(2,x)\!=\! A_{2,2}(x\!+\!3)\!-\!3$\ero}}
\put(314,526){\sx{1.8}{\rot{45}$y\!=\!\mathcal{A}(1,x)\!=\! A_{2,1}(x\!+\!3)\!-\!3$\ero}}
\put(314,526){\sx{1.8}{\rot{45}$y\!=\!\mathcal{A}(1,x)\!=\! A_{2,1}(x\!+\!3)\!-\!3$\ero}}
%\put(438,714){\sx{1.8}{\rot{85}$y\!=\!\mathrm{pen}(x)$\ero}}
%\put(538,912){\sx{1.8}{\rot{82}$y\!=\!\mathrm{tet}_2(x)$\ero}}
\put(526,822){\sx{1.8}{\rot{82}$y\!=\!A_{2,4}(x)\!=\!\mathrm{tet}_2(x)$\ero}}
\put(526,822){\sx{1.8}{\rot{82}$y\!=\!A_{2,4}(x)\!=\!\mathrm{tet}_2(x)$\ero}}
%\put(578,892){\sx{1.8}{\rot{73}$y\!=\!2^x$\ero}}
\put(566,858){\sx{1.8}{\rot{73}$y\!=\!A_{2,3}(x)\!=\!2^x$\ero}}
\put(566,858){\sx{1.8}{\rot{73}$y\!=\!A_{2,3}(x)\!=\!2^x$\ero}}
\put(566,792){\sx{1.8}{\rot{62}$y\!=\!A_{2,2}(x)\!=\!\mathrm{2}x$\ero}}
\put(566,792){\sx{1.8}{\rot{62}$y\!=\!A_{2,2}(x)\!=\!\mathrm{2}x$\ero}}
%\put(478,628){\sx{1.8}{\rot{50}$y\!=\!\mathrm{e}\!+\!x$\ero}}
\put(520,696){\sx{1.96}{\rot{44}$y\!=\!A_{2,1}(x)\!=\!2\!+\!x$\ero}}
\put(520,696){\sx{1.96}{\rot{44}$y\!=\!A_{2,1}(x)\!=\!2\!+\!x$\ero}}
%
%\put(86,222){\sx{1.9}{\rot{11}$y\!=\!\mathrm{exp}(x)$\ero}}
%\put(20,30){\sx{1.9}{\rot{30}$y\!=\!\mathrm{pen}(x)$\ero}}
\put(32,326){\sx{1.9}{\rot{3}$y\!=\!2^x$\ero}}
\put(32,326){\sx{1.9}{\rot{3}$y\!=\!2^x$\ero}}
\put(132,4){\sx{1.9}{\rot{81}$y\!=\!\mathrm{tet}_2(x)$\ero}}
\put(132,4){\sx{1.9}{\rot{81}$y\!=\!\mathrm{tet}_2(x)$\ero}}
\put(178,8){\sx{1.9}{\rot{66}$y\!=\!\mathrm{2} x$\ero}}
\put(178,8){\sx{1.9}{\rot{66}$y\!=\!\mathrm{2} x$\ero}}
%
%\put(308, 13){\sx{2.2}{$y\!=\!L_{\mathrm e,4,0}$}}
\end{picture}
\end{picture}
\end{document}
\end{document}

Revision as of 14:11, 3 September 2014

Summary

Title / Description


Complex map of tetration to base

is shown with lines of constant and lines of constant , while

Citizendium author
& Copyright holder


Copyright © Dmitrii Kouznetsov.
See below for licence/re-use information.
Date created


2014 August
Country of first publication


Japan
Notes


I use this image in the article

D.Kouznetsov. Holomorphic ackermanns. 2015, in preparation.

Other versions


http://mizugadro.mydns.jp/t/index.php/File:Ack4c.jpg
Using this image on CZ


Please click here to add the credit line, then copy the code below to add this image to a Citizendium article, changing the size, alignment, and caption as necessary.

{{Image|Ack4c.jpg|right|350px|Add image caption here.}}

Image issue? Contact us via the email below.

Please send email to manager A T citizendium.org .


Licensing

This media, Ack4c.jpg, is licenced under the Creative Commons Attribution 3.0 Unported License

You are free: To Share — To copy, distribute and transmit the work; To Remix — To adapt the work.
Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
For any reuse or distribution, you must make clear to others the licence terms of this work (the best way to do this is with a link to this licence's web page). Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights.
Read the full licence.


C++ Generator of map

Files ado.cin, conto.cin, filog.cin, TetSheldonIma.inc, GLxw2048.inc should be loaded to the working directory in order to compile the code below.

#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex> typedef std::complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" #include "filog.cin" z_type b=z_type( 1.5259833851700000, 0.0178411853321000); z_type a=log(b); z_type Zo=Filog(a); z_type Zc=conj(Filog(conj(a))); DB A=32.; z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd; #include "GLxw2048.inc" int K=2048; //#include "ima6.inc" #include "TetSheldonIma.inc" z_type E[2048],G[2048]; DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);} c=0.; z+=z_type(0.1196573712872846, 0.1299776198056910); DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));} cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; return c;} int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d; int M=601,M1=M+1; int N=461,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202); fprintf(o,"301 101 translate\n 10 10 scale\n"); DO(m,M1)X[m]=-30.+.1*(m); DO(n,200)Y[n]=-10.+.05*n; Y[200]=-.01; Y[201]= .01; for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}} for(n=-10;n<11;n++){ M( -30,n)L(30,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(n,N1){y=Y[n]; for(m=295;m<305;m++) {x=X[m]; //printf("%5.2f\n",x); z=z_type(x,y); c=tetb(z); p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} d=c; for(k=1;k<31;k++) { m1=m+k*10; if(m1>M) break; d=exp(a*d); p=Re(d);q=Im(d); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} } d=c; for(k=1;k<31;k++) { m1=m-k*10; if(m1<0) break; d=log(d)/a; p=Re(d);q=Im(d); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} } }} fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n"); for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf tetsheldonmap.eps"); system( "open tetsheldonmap.pdf"); getchar(); system("killall Preview"); }

Latex generator of labels

\documentclass[12pt]{article} \paperwidth 640px \paperheight 1006px \textwidth 1394px \textheight 1300px \topmargin -104px \oddsidemargin -92px \usepackage{graphics} \usepackage{rotating} \newcommand \sx {\scalebox} \newcommand \rot {\begin{rotate}} \newcommand \ero {\end{rotate}} \newcommand \ing {\includegraphics} \newcommand \rmi {\mathrm{i}} \begin{document} {\begin{picture}(608,1006) \put(0,0){\ing{acker2}} \put(281,988){\sx{3.}{$y$}} \put(279,895){\sx{3.}{$6$}} \put(279,795){\sx{3.}{$5$}} \put(279,694){\sx{3.}{$4$}} \put(279,594){\sx{3.}{$3$}} \put(279,468){\sx{3.}{$\mathrm e$}} \put(279,494){\sx{3.}{$2$}} \put(279,394){\sx{3.}{$1$}} \put(279,294){\sx{3.}{$0$}} \put(258,193){\sx{3.}{$-1$}} \put(258, 93){\sx{3.}{$-2$}} \put( 80,274){\sx{3.}{$-2$}} \put(180,274){\sx{3.}{$-1$}} \put(296,274){\sx{3.}{$0$}} \put(396,274){\sx{3.}{$1$}} \put(496,274){\sx{3.}{$2$}} \put(586,274){\sx{3.}{$x$}} \put(248,720){\sx{1.8}{\rot{85}$y\!=\!\mathcal{A}(4,x)\!=\! A_{2,4}(x\!+\!3)\!-\!3$\ero}} \put(312,720){\sx{1.8}{\rot{80}$y\!=\!\mathcal{A}(3,x)\!=\! A_{2,3}(x\!+\!3)\!-\!3$\ero}} \put(348,712){\sx{1.8}{\rot{63}$y\!=\!\mathcal{A}(2,x)\!=\! A_{2,2}(x\!+\!3)\!-\!3$\ero}} \put(314,526){\sx{1.8}{\rot{45}$y\!=\!\mathcal{A}(1,x)\!=\! A_{2,1}(x\!+\!3)\!-\!3$\ero}} \put(526,822){\sx{1.8}{\rot{82}$y\!=\!A_{2,4}(x)\!=\!\mathrm{tet}_2(x)$\ero}} \put(566,858){\sx{1.8}{\rot{73}$y\!=\!A_{2,3}(x)\!=\!2^x$\ero}} \put(566,792){\sx{1.8}{\rot{62}$y\!=\!A_{2,2}(x)\!=\!\mathrm{2}x$\ero}} \put(520,696){\sx{1.96}{\rot{44}$y\!=\!A_{2,1}(x)\!=\!2\!+\!x$\ero}} \put(32,326){\sx{1.9}{\rot{3}$y\!=\!2^x$\ero}} \put(132,4){\sx{1.9}{\rot{81}$y\!=\!\mathrm{tet}_2(x)$\ero}} \put(178,8){\sx{1.9}{\rot{66}$y\!=\!\mathrm{2} x$\ero}} \end{picture} \end{document}

Refrences

http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. (2009). Solution of F(z+1)=exp(F(z)) in the complex z-plane. Mathematics of Computation, 78: 1647-1670.

https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. (In Russian), DOI:10.1090/S0025-5718-09-02188-7. Page 257, Figure 18.8.

http://mizugadro.mydns.jp/t/index.php/File:Ack4c.jpg

D.Kouznetsov. Holomorphic ackermanns. 2015, in preparation.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:51, 11 March 2022Thumbnail for version as of 18:51, 11 March 20225,130 × 1,760 (1.92 MB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata