User:Dmitrii Kouznetsov/loginal: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
m (misprints; conclusion)
No edit summary
 
(13 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{AccountNotLive}}
{{under construction; Name of article is temporal.}}
{{under construction; Name of article is temporal.}}
'''Loginal'''  of [[function]] <math>g</math> at some space S is  [[function]]  <math> K </math> such tat
 
: (1) <math> g^a(K(t))=K(a+t) </math>  for all <math>t \in \rm S </math>
'''Loginal'''  of [[function]] <math>g</math> at some space S is  [[function]]  <math> K </math> such that
: (0) <math> g(K(t))=K(1+t) </math>  for all <math>t \in \rm S </math>
<!-- and integer values of <math>a</math>.!-->  
<!-- and integer values of <math>a</math>.!-->  
Loginal allow the solution <math>f</math> of equation
Loginal allow the solution <math>f</math> of equation
: (2) <math>f^n(x)=g(x)</math>
: (1) <math>f^n(x)=g(x)</math>
in form  
in form  
: (3) <math>f(x)=K\!\left( \frac{1}{n} + K^{-1}(x)\right)</math>
: (2) <math>f(x)=K\!\left( \frac{1}{n} + K^{-1}(x)\right)</math>
==Generalization==
The straightforward generalization of equaiton (0) can be written in form
: (3) <math> g^a(K(t))=K(a+t) </math>  for all <math>t \in \rm S </math> and any <math> a </math> from some set A that includes integers.
In some cases, it is possible to extend the set A to [[complex number]]s.


==Loginal should be invertable==
==Loginal should be invertable==
<!-- ==Assume that <math>K</math> exists== !-->
<!-- ==Assume that <math>K</math> exists== !-->
<!-- Assume that (1) is valie not only for integer <math>z</math>. !-->
<!-- Assume that (1) is valie not only for integer <math>z</math>. !-->
 
As loginal <math>K</math> of function <math>g</math> is implemented, together with its [[inverse function]]
<math>K^{-1}</math> , the solution of equation (1) becomes straightforward:
:(4) <math> f(x)=g^{1/n}(x) =  
:(4) <math> f(x)=g^{1/n}(x) =  
g^{1/n}
g^{1/n}
Line 21: Line 28:
</math>   
</math>   


Then, at the substitution to the initial equation (1)
Then, for the initial equation (1)


: (5) <math>
: (5) <math>
Line 40: Line 47:
f^2(x)=K\left(\frac{1}{n}+\frac{1}{n} +K^{-1}(x) \right)
f^2(x)=K\left(\frac{1}{n}+\frac{1}{n} +K^{-1}(x) \right)
=K\left(\frac{2}{n}+K^{-1}(x) \right)
=K\left(\frac{2}{n}+K^{-1}(x) \right)
</math>
Similarly, for any <math>m</math>
: (8) <math>
f^{m+1}(x)=
f(f^{m}(x))=
K\left(\frac{1}{n}+\frac{m}{n} +K^{-1}(x) \right)
=K\left(\frac{m+1}{n}+K^{-1}(x) \right)
</math>
</math>


Line 56: Line 70:
If  
If  
<math> g </math> means multiplication by a constant <math>c</math>, id est,
<math> g </math> means multiplication by a constant <math>c</math>, id est,
<math> g(x)=x*c</math>, then
<math> g(x)=cx</math>, then
: (9)  <math> c^n K(t)=K(t+n) </math>  
: (9)  <math> c^n K(t)=K(t+n) </math>  
means that  
means that  
<math> K(t)=c^t</math> and  
<math> K(t)=c^t</math> and  
<math> K^{-1}(t)=\log_c(t)</math>.
<math> K^{-1}(t)=\log_c(t)</math>.
===Exponentiation===
===Exponentiation===
For exponentiation, <math> K </math> is tetration,
For exponentiation, <math> K </math> is tetration,
Line 67: Line 82:
<math> \exp^n(K(x))=K(x+n)</math>
<math> \exp^n(K(x))=K(x+n)</math>


In particular, I can extract the square root of exponential, id est, to find finction  
In particular, one can extract the square root of exponential, id est, to find finction  
<math>f=\sqrt(\exp)=\exp^{1/2}</math> such that
<math>f=\sqrt{\exp}=\exp^{1/2}</math> such that
: (12) <math>f(f(x))=\exp(x)</math>
: (12) <math>f(f(x)) =\exp(x)</math>


The calculation is straightforward:
The calculation is straightforward:
Line 83: Line 98:
: (14) <math>f(f(x))=
: (14) <math>f(f(x))=
F\!\left(  
F\!\left(  
             \frac{1}{2}+F^{-1}\!\left( F\!(\left( \frac{1}{2}+F^{-1}(x) \right) \right)  
             \frac{1}{2}+F^{-1}\!\left( F\!\left( \frac{1}{2}+F^{-1}(x) \right) \right)  
   \right) </math>
   \right) </math>


Line 89: Line 104:


: (16) <math> f(f(x))= F\!\left(1+F^{-1}(x)\right)=\exp(F (F^{-1}(x))=\exp(x) </math>
: (16) <math> f(f(x))= F\!\left(1+F^{-1}(x)\right)=\exp(F (F^{-1}(x))=\exp(x) </math>
==Possible application==
==Possible application==
In the case when a signal is supposed to pass through a set of <math>N</math> identical elements, and the transfer function of the integral cirquit is known, the loginal of this transfer function allows to calculate the response function of each indifidual element, extracting root of power <math>N</math> from the integral response function.
In the case when a signal is supposed to pass through a set of <math>N</math> identical elements, and the transfer function of the integral cirquit is known, the loginal of this transfer function allows to calculate the response function of each indifidual element, extracting root of power <math>N</math> from the integral response function.
Line 97: Line 113:


==Conclusion==
==Conclusion==
Roughly, loginal of a funciton allows to count, how many times the function should be applied to get the given function;
Roughly, loginal of a function allows to count, how many times the function should be applied to get the given function;
this allows to apply a function some "fractal number'' of times. For summation and multiplication, loginal is easy to express.
this allows to apply a function some "fractal number'' of times. For summation and multiplication, loginal is easy to express.
For exponential, loginal is operation of [[tetration]].
For exponential, loginal is operation of [[tetration]].

Latest revision as of 02:46, 22 November 2023


The account of this former contributor was not re-activated after the server upgrade of March 2022.


Template:Under construction; Name of article is temporal.

Loginal of function at some space S is function such that

(0) for all

Loginal allow the solution of equation

(1)

in form

(2)

Generalization

The straightforward generalization of equaiton (0) can be written in form

(3) for all and any from some set A that includes integers.

In some cases, it is possible to extend the set A to complex numbers.

Loginal should be invertable

As loginal of function is implemented, together with its inverse function , the solution of equation (1) becomes straightforward:

(4)

Then, for the initial equation (1)

(5)
(6)
(7)

Similarly, for any

(8)

Special cases

For simple function , it is easy to find its loginal.

Summation

In particular, if means addition a constant , id est, , then

(8)

means that

In such a way, this case is trivial.

Multiplication

If means multiplication by a constant , id est, , then

(9)

means that and .

Exponentiation

For exponentiation, is tetration,

(10) ;

or

In particular, one can extract the square root of exponential, id est, to find finction such that

(12)

The calculation is straightforward:

(13)

Checkback:

(14)
(15)
(16)

Possible application

In the case when a signal is supposed to pass through a set of identical elements, and the transfer function of the integral cirquit is known, the loginal of this transfer function allows to calculate the response function of each indifidual element, extracting root of power from the integral response function.

The elements have no need to be discreet, formula (4) can be applied for real values of as well. At least tetration (case of exponential function ) seems to be naturally extendable for the complex values. The continuous case may refer to the nonlinear optical fiber cirquit.

Conclusion

Roughly, loginal of a function allows to count, how many times the function should be applied to get the given function; this allows to apply a function some "fractal number of times. For summation and multiplication, loginal is easy to express. For exponential, loginal is operation of tetration. In general case, finding of loginal of a heneral function is not trivial.

References

(needs to be cleaned up)

  • A. Smith. Is there any way to approximate the solution of ?

Argonne National Laboratory, Division of Educational Programs. www.newton.dep.anl.gov/newton/askasci/1993/math/MATH023.HTM

  • I.N. Baker, The iteration of entire transcendental functions and the solution of the functional equation f(f(z) = F(z). Math. Ann. 129 (1955), 174-180
  • M. Bajraktarevic, Solution générale de l'équation fonctionelle . Publ. Inst. Math. Beograd (N.S.) 5(19) (1965), 115-124
  • P. Erdös & E. Jabotinsky, On Analytic Iteration. J. Analyse Math. 8 (1960/61), 361-376
  • G.M. Ewing & W.R. Utz, Continuous solutions of . Can. J. Math. 5 (1953), 101-103
  • R. Isaacs, Iterates of fractional order. Canad. J. Math. 2 (1950), 409-416.
  • R. Isaacs, On Fractional Iteration. Technical Report No. 320, Department of Mathematical Sciences, The John Hopkins University, November 1979
  • E. Jabotinsky, Analytic iteration. Trans. Amer. Math. Soc. 108 (1963), 457-477
  • W. Jarczyk, A recurrent method of solving iterative functional equations. Prace Nauk. Uniw. Slask. Katowic. 1206 (1991)
  • L. Kindermann, An Addition to Backpropagation for Computing Functional Roots. Proc. Int'l ICSC/IFAC Symp. on Neural Computation - NC'98, Vienna (1998), 424-427
  • B. Gawel, On the uniqueness of continuous solutions of functional equations. Ann. Polon. Math. LX.3 (1995), 231-239
  • H. Kneser, Reelle analytische Lösungen der Gleichung und verwandter Funktionalgleichungen. J. reine angew. Math. 187 (1950), 56-67
  • J. Kobza, Iterative functional equation with piecewise linear. Journal of Computational and Applied Mathematics 115 (2000), 331-347
  • M. Kuczma, On the functional equation . Ann. Polon. Math. 11 (1961) 161-175
  • J.C.Lillo, The functional equation . Arkiv för Mat. 5 (1965), 357-361
  • J.C.Lillo, The functional equation . Ann. Polon. Math. 19 (1967), 123-135

L.S.O. Liverpool, Fractional iteration near a fix point of multiplier 1. J. London Math. Soc. 41 (1979) | Homepage

  • S. Lojasiewicz, Solotion générale de l'équation fonctionelle . Annales de la Societé Plonaise de Mathematique 24 (1951), 88-91
  • J.L. Massera & A. Petracca, On the functional equation . Revista Union Mat. Argentinia 11 (1946), 206-211
  • P.B. Miltersen, N.V Vinodchandran, O. Watanabe, Super-polynomial versus half-exponential circuit size in the exponential hierarchy. Research Report c-130, 1999. Dept. of Math and Comput. Sc., Tokyo Inst. of Tech.; also: BRICS Report Series RS-99-4, Dept. of Computer Science, Univ. Aarhus, 1999
  • R.E. Rice, Fractional iterates. PhD Thesis, University of Massachusetts, Amherest (1977)
  • R.E. Rice, Iterative square roots of Cebysev polynomials. Stochastica 3 (1979), 1-14
  • R.E. Rice, B. Schweizer & A. Sklar, When is for all complex Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z<math>? Amer. Math. Monthly 87 (1980), 252-263 * M.C. Zdun, Differentiable fractional iteration. Bull. Acad. Sci. Polon. Sér. Sci. Math. Astronom. Phys. 25 (1977), 643-646 *Weinian Zhang, Discussion on iterated equation <math>\sum_{i=1}^n f^i(x)=F(x)} Chin. Sci. Bul. (Kexue Tongbao), 32 (1987), 21: 1444-1451
  • Weinian Zhang, A generic property of globally smooth iterative roots. Scientia Sinica A, 38 (1995), 267-272
  • Weinian Zhang, PM functions, their characteristic intervals and iterative roots. Annales Polonici Mathematici, LXV.2 (1997), 119-128
  • Weinian Zhang, Discussion on the differentiable solutions of the iterated equation . Nonlinear Analysis, 15 (1990), 4: 387-398
  • P. Walker, Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of Computation 57 (1991), 723-733