User:Dmitrii Kouznetsov/loginal: Difference between revisions
imported>Dmitrii Kouznetsov m (→Summation) |
imported>Dmitrii Kouznetsov m (misprints; conclusion) |
||
Line 1: | Line 1: | ||
{{under construction; Name of article is temporal.}} | {{under construction; Name of article is temporal.}} | ||
'''Loginal''' of [[function]] <math>g</math> at some space S is [[function]] <math> K </math> such tat | '''Loginal''' of [[function]] <math>g</math> at some space S is [[function]] <math> K </math> such tat | ||
: (1) <math> | : (1) <math> g^a(K(t))=K(a+t) </math> for all <math>t \in \rm S </math> | ||
<!-- and integer values of <math>a</math>.!--> | <!-- and integer values of <math>a</math>.!--> | ||
Loginal allow the solution <math>f</math> of equation | Loginal allow the solution <math>f</math> of equation | ||
Line 37: | Line 37: | ||
\right) | \right) | ||
</math> | </math> | ||
:<math> | : (7) <math> | ||
f^2(x)=K\left(\frac{1}{n}+\frac{1}{n} +K^{-1}(x) \right) | f^2(x)=K\left(\frac{1}{n}+\frac{1}{n} +K^{-1}(x) \right) | ||
=K\left(\frac{2}{n}+K^{-1}(x) \right) | =K\left(\frac{2}{n}+K^{-1}(x) \right) | ||
Line 43: | Line 43: | ||
==Special cases== | ==Special cases== | ||
For simple function <math>g</math>, it is easy to find its loginal. | |||
===Summation=== | ===Summation=== | ||
In particular, if | In particular, if | ||
<math> g </math> means addition a constant <math>c</math>, id est, | <math> g </math> means addition a constant <math>c</math>, id est, | ||
<math> g(x)=x+c</math>, then | <math> g(x)=x+c</math>, then | ||
: ( | : (8) <math> nc + K(t)=K(t+n) </math> | ||
means that <math> K(t)=t=K^{-1}(t)</math> | means that <math> K(t)=t=K^{-1}(t)</math> | ||
Line 56: | Line 57: | ||
<math> g </math> means multiplication by a constant <math>c</math>, id est, | <math> g </math> means multiplication by a constant <math>c</math>, id est, | ||
<math> g(x)=x*c</math>, then | <math> g(x)=x*c</math>, then | ||
: ( | : (9) <math> c^n K(t)=K(t+n) </math> | ||
means that | means that | ||
<math> K(t)=c^t</math> and | <math> K(t)=c^t</math> and | ||
Line 62: | Line 63: | ||
===Exponentiation=== | ===Exponentiation=== | ||
For exponentiation, <math> K </math> is tetration, | For exponentiation, <math> K </math> is tetration, | ||
: ( | : (10) <math> \exp(K(x))=K(x+1)</math>; | ||
or | or | ||
<math> \exp^n(K(x))=K(x+n)</math> | <math> \exp^n(K(x))=K(x+n)</math> | ||
Line 88: | Line 89: | ||
: (16) <math> f(f(x))= F\!\left(1+F^{-1}(x)\right)=\exp(F (F^{-1}(x))=\exp(x) </math> | : (16) <math> f(f(x))= F\!\left(1+F^{-1}(x)\right)=\exp(F (F^{-1}(x))=\exp(x) </math> | ||
==Possible application== | |||
In the case when a signal is supposed to pass through a set of <math>N</math> identical elements, and the transfer function of the integral cirquit is known, the loginal of this transfer function allows to calculate the response function of each indifidual element, extracting root of power <math>N</math> from the integral response function. | |||
The elements have no need to be discreet, formula (4) can be applied for real values of <math>n</math> as well. | |||
At least [[tetration]] (case of exponential function <math>g</math>) seems to be naturally extendable for the complex values. | |||
The continuous case may refer to the nonlinear optical fiber cirquit. | |||
==Conclusion== | |||
Roughly, loginal of a funciton allows to count, how many times the function should be applied to get the given function; | |||
this allows to apply a function some "fractal number'' of times. For summation and multiplication, loginal is easy to express. | |||
For exponential, loginal is operation of [[tetration]]. | |||
In general case, finding of loginal <math>K</math> of a heneral function <math>g</math> is not trivial. | In general case, finding of loginal <math>K</math> of a heneral function <math>g</math> is not trivial. | ||
Revision as of 17:19, 25 May 2008
Template:Under construction; Name of article is temporal. Loginal of function at some space S is function such tat
- (1) for all
Loginal allow the solution of equation
- (2)
in form
- (3)
Loginal should be invertable
- (4)
Then, at the substitution to the initial equation (1)
- (5)
- (6)
- (7)
Special cases
For simple function , it is easy to find its loginal.
Summation
In particular, if means addition a constant , id est, , then
- (8)
means that
In such a way, this case is trivial.
Multiplication
If means multiplication by a constant , id est, , then
- (9)
means that and .
Exponentiation
For exponentiation, is tetration,
- (10) ;
or
In particular, I can extract the square root of exponential, id est, to find finction such that
- (12)
The calculation is straightforward:
- (13)
Checkback:
- (14)
- (15)
- (16)
Possible application
In the case when a signal is supposed to pass through a set of identical elements, and the transfer function of the integral cirquit is known, the loginal of this transfer function allows to calculate the response function of each indifidual element, extracting root of power from the integral response function.
The elements have no need to be discreet, formula (4) can be applied for real values of as well. At least tetration (case of exponential function ) seems to be naturally extendable for the complex values. The continuous case may refer to the nonlinear optical fiber cirquit.
Conclusion
Roughly, loginal of a funciton allows to count, how many times the function should be applied to get the given function; this allows to apply a function some "fractal number of times. For summation and multiplication, loginal is easy to express. For exponential, loginal is operation of tetration. In general case, finding of loginal of a heneral function is not trivial.
References
(needs to be cleaned up)
- Lars Kindermann. References about Iterative Roots and Fractional Iteration. http://reglos.de/lars/ffx.html
- A. Smith. Is there any way to approximate the solution of ?
Argonne National Laboratory, Division of Educational Programs. www.newton.dep.anl.gov/newton/askasci/1993/math/MATH023.HTM
- I.N. Baker, The iteration of entire transcendental functions and the solution of the functional equation f(f(z) = F(z). Math. Ann. 129 (1955), 174-180
- M. Bajraktarevic, Solution générale de l'équation fonctionelle . Publ. Inst. Math. Beograd (N.S.) 5(19) (1965), 115-124
- P. Erdös & E. Jabotinsky, On Analytic Iteration. J. Analyse Math. 8 (1960/61), 361-376
- G.M. Ewing & W.R. Utz, Continuous solutions of . Can. J. Math. 5 (1953), 101-103
- K. Iga, Continuous half-iterates of functions. Manuscript from http://math.pepperdine.edu/~kiga | postscript
- R. Isaacs, Iterates of fractional order. Canad. J. Math. 2 (1950), 409-416.
- R. Isaacs, On Fractional Iteration. Technical Report No. 320, Department of Mathematical Sciences, The John Hopkins University, November 1979
- E. Jabotinsky, Analytic iteration. Trans. Amer. Math. Soc. 108 (1963), 457-477
- W. Jarczyk, A recurrent method of solving iterative functional equations. Prace Nauk. Uniw. Slask. Katowic. 1206 (1991)
- L. Kindermann, An Addition to Backpropagation for Computing Functional Roots. Proc. Int'l ICSC/IFAC Symp. on Neural Computation - NC'98, Vienna (1998), 424-427
- B. Gawel, On the uniqueness of continuous solutions of functional equations. Ann. Polon. Math. LX.3 (1995), 231-239
- H. Kneser, Reelle analytische Lösungen der Gleichung und verwandter Funktionalgleichungen. J. reine angew. Math. 187 (1950), 56-67
- J. Kobza, Iterative functional equation with piecewise linear. Journal of Computational and Applied Mathematics 115 (2000), 331-347
- M. Kuczma, On the functional equation . Ann. Polon. Math. 11 (1961) 161-175
- J.C.Lillo, The functional equation . Arkiv för Mat. 5 (1965), 357-361
- J.C.Lillo, The functional equation . Ann. Polon. Math. 19 (1967), 123-135
L.S.O. Liverpool, Fractional iteration near a fix point of multiplier 1. J. London Math. Soc. 41 (1979) | Homepage
- S. Lojasiewicz, Solotion générale de l'équation fonctionelle . Annales de la Societé Plonaise de Mathematique 24 (1951), 88-91
- J.L. Massera & A. Petracca, On the functional equation . Revista Union Mat. Argentinia 11 (1946), 206-211
- P.B. Miltersen, N.V Vinodchandran, O. Watanabe, Super-polynomial versus half-exponential circuit size in the exponential hierarchy. Research Report c-130, 1999. Dept. of Math and Comput. Sc., Tokyo Inst. of Tech.; also: BRICS Report Series RS-99-4, Dept. of Computer Science, Univ. Aarhus, 1999
- R.E. Rice, Fractional iterates. PhD Thesis, University of Massachusetts, Amherest (1977)
- R.E. Rice, Iterative square roots of Cebysev polynomials. Stochastica 3 (1979), 1-14
- R.E. Rice, B. Schweizer & A. Sklar, When is for all complex Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z<math>? Amer. Math. Monthly 87 (1980), 252-263 * M.C. Zdun, Differentiable fractional iteration. Bull. Acad. Sci. Polon. Sér. Sci. Math. Astronom. Phys. 25 (1977), 643-646 *Weinian Zhang, Discussion on iterated equation <math>\sum_{i=1}^n f^i(x)=F(x)} Chin. Sci. Bul. (Kexue Tongbao), 32 (1987), 21: 1444-1451
- Weinian Zhang, A generic property of globally smooth iterative roots. Scientia Sinica A, 38 (1995), 267-272
- Weinian Zhang, PM functions, their characteristic intervals and iterative roots. Annales Polonici Mathematici, LXV.2 (1997), 119-128
- Weinian Zhang, Discussion on the differentiable solutions of the iterated equation . Nonlinear Analysis, 15 (1990), 4: 387-398
- P. Walker, Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of Computation 57 (1991), 723-733